Ultra-Lightweight Borosilicate Gas-Fusion™ Demonstrator Mirror

Michael Voevodsky

HEXTEK Corporation

September 16, 2003

HEXTEK Corporation

Principal Investigator: Richard W. Wortley

Program Manager: Michael Voevodsky

NASA Marshall Space Flight Center

Principal Investigator: H. Philip Stahl, Ph.D

Contract # H-34475D

Company Background

- Founded in 1985
 - Technology Spin-Off from U of AZ Steward Observatory Mirror Lab
 - Created as a means to mass produce lightweight, robust, low cost mirrors for large space borne arrays.
 - First project to supply 110+ mirrors for Los Alamos
 - Aurora Laser Fusion Project
- Specialize in ...

Large lightweight mirrors & substrates

- Gas-Fusion[™] and casting technologies
- Sizes up to 2500 mm diameter
- Meter class "Work Horse" size
- Areal Densities from 100 to <15 kg/m²
- Lightweighting from 60 to >90%

Gas-Fusion™ Substrate Features

- Closed-back honeycomb structure high stiffness
- Fused at high temperatures & pneumatic pressure to create cell structure
 - 100% Fusion Bonds
- Robust Construction
 - Radius Corners at Cell/Faceplate intersection
- Highly flexible geometry designs
- High Degree of Customization
- Capable of High Optical Finishes
- Proven to 1.5 m diameter larger possible
- Fast Manufacturing Cycle Times
 - Lead times do not scale with size
- Proven success in space.

Space Heritage

- BMDO MSTI-3 Satellite
- Visible and IR wavelengths
- Operating Temp: -40°C to -60°C

Gas-Fusion™ Scanning Flat

- ~6 mm face and back plates
- Weight: <2.4 lbs. before polishing.
- Polished face and back
- Final face finish $\lambda/5$ @633 nm

Issues facing NASA for space based optical systems

- Cost and schedule constraints represent significant hurdles for NASA to achieve its objectives for space based systems.
 - Primary Mirror is a key driver
 - Weight
 - Cost
 - Schedule
 - Risk
- Opportunity
 - How to reduce cost, schedule and risk?

Why Borosilicate Glass?

- Reliable consistent quality (Schott Borofloat®)
- Readily available
- Low cost material
- Published material CTE performance excellent at cryogenic temperatures
 - Near zero CTE at 30-50 ° K

Cryogentic Material Data

60 30 $\alpha (\times 10^8 \text{ K}^{-1})$ Š INVAR (LR-35) SUPERINVAR 240 120 180 240 300 °C -120 -60 TEMPERATURE Figure 2. Thermal expansivity of some ultralow-expansion materials.

CTE at 30-50 °K ppm ~0.1 **Pyrex** Zerodur ~0.7 SiO₂ ~0.8 **ULE** ~1.0

Figure 1. Thermal expansivity of some common materials.

Project Objectives

- Demonstrate the Gas-Fusion™ substrate technology is capable of 15 kg/m² areal density
- Produce a 250 mm borosilicate demonstrator mirror substrate for NASA MSFC to test cryogenically.
 - Provide real time data on Gas-Fusion™ borosilicate mirror technology

General Project Flow

HEXTEK

- Acquire & test materials for CTE
- Low density trials
- Produce 250 mm demonstrator blank
- Precision slump to curve

NASA MSFC

- Finish mirror to specification
- Cyro cool and measure changes in the mirror

Planned Cryogenic Testing

- Conduct tests at NASA MSFC X-Ray Cryogenic Facility
 - Utilize 1 m x 2 m chamber
 - Mount mirror on 2 point mount
 - High Speed Phase-Shift Interferometer
 - Watch it at center of curvature
- Characterize substrate performance at various cryogenic temperatures:

Surface figure (wave front) change as a function of temperature

- Radius of Curvature
- Repeatability Predictability
- Measure multiple steps on the way down.
 - Target Temperature: 30 ° K (-5 + 20 ° K)

Expected Significance to NASA

- Provide valuable performance data on an alternative substrate technology
- Provide access to a technology that is scalable, robust, space proven, and rapidly produced
- Cost Effective
 - Substrate cost a fraction of competing technologies
 - Total system savings due to shorter lead times on a long lead item.
- Reduce risk
 - Cost
 - Schedule
 - Performance

Manufacturing Design Considerations

- Practical Design
 - Meet areal density target
 - Facilitate conventional ultra-lightweight polishing
- CTE Matching of Face and Back Plates
 - Cut from the same sheet of glass
 - Test plates and core glass for actual CTE to 10 parts per billion

250 mm Demonstrator Design

HEXTEK Design Details

- Diameter: 250 mm
- ROC: 2500 mm (f/5)
- Face & back plate thickness: 3 mm
- Cell wall thickness: 0.5 1.2 mm
- Cell Count: 37 mm
- Cell span:~43 mm
- Thickness: 20 mm
- Areal Density
 - before Polishing: 15.3 kg/m²
 - after Polishing: 14.2 kg /m²

Blank Fabrication

Fused Plano first.

 Second, generated edges to diameter, prior to slumping.

Precision Slumping

 300 mm fused silica slump mold generated to curve and polished to facilitate accurate slumping

Precision Slumping

- Pre slumping.
 - Plano blank positioned on the SiO₂ mold

- Post slumping
 - Blank is mated to the mold

Finished Blank

- Slumped surface accurate to within 0.18 mm
- Minimal faceplate material removal
- Achieved areal density target

250 mm HEXTEK Gas-Fusion™ Ultra-Lightweight						
	Thickness as Fused	Thickness as Finished (NASA)	Weight Finished (NASA)	Areal Density (NASA)		
Core / Ribs	0.5 - 1.3 mm	0.5 - 1.3 mm	0.105 kg	2.1 kg/m2		
Face Plate	3.0 mm	2.5 mm	0.273 kg	5.6 kg/m2		
Back Plate	3.0 mm	3.0 mm	0.320 kg	6.5 kg/m ²		
Total			0.698 kg	14.2 kg/m2		

Mirror Finishing (NASA MSFC)

- ROC: ~2500 mm spherical
- <15 kg/m² areal density target post polishing</p>
- Finish: 50-63 nm rms
- Surface Roughness: < 4 nm (< 2 nm expected)

Photo courtesy NASA MSFC

Projected Lightweighting Capability

- Current 250 mm demonstrator blank is capable of meeting <8 kg/m².
 - Thinning face plates

250 mm HEXTEK Gas-Fusion™ Ultra-Lightweight						
Additional Lightweighting Capability						
	Thickness as	Thickness as	Weight	Areal Density		
	Fused	Finished	Finished			
Core / Ribs	0.5 - 1.3 mm	0.5 - 1.3 mm	0.105 kg	2.1 kg/m2		
Face Plate	3.0 mm	1.0 mm	0.109 kg	2.2 kg/m2		
Back Plate	3.0 mm	1.5 mm	0.160 kg	3.3 kg/m2		
Total			0.368 kg	7.6 kg/m2		

- Areal Densities for larger 1 m sizes
 - Expect to be able to achieve <13 kg/m² with current core design
 - Have not pushed technology to failure

Projected Scalability

- Standard Gas-Fusion™ technology proven to 1.5 m
- Ultra-lightweight design should follow same size capability.

Projected Lead Times

- 1 meter Standard Lightweight Gas-Fusion™
 - 3-4 months first substrate
 - tooling, material acquisition, and back-log
 - <1 month for each additional substrate</p>
- 1 meter Ultra-Lightweight Gas-Fusion™
 - 4-6 months first substrate
 - tooling, material acquisition and cte testing
 - <1 month for each additional substrate</p>

Summary

- Hextek Gas-Fusion™ technology capable of meeting the 15 kg/m² area density requirement
 - Current blank can be finished to <8 kg/m²
- Blank is complete and in polishing at MSFC
- First Cryogenic testing opportunity in the Fall '03
- Positive results from cryogenic testing will provide NASA and community with access to a <u>rapidly produced</u>, <u>cost</u> <u>effective</u>, <u>scaleable</u>, <u>high performance</u> source of mirror substrates for cryogenic operating temperatures.

Thank You